
Exova Warringtonfire Holmesfield Road Warrington WA1 2DS United Kingdom

 $\begin{array}{l} T:+44 \; (0 \;\; 1925 \; 655116 \\ F:+44 \; (0) \; 1925 \; 655419 \\ E: \; warrington@exova.com \end{array}$ W: www.exova.com

EN 45545-2: 2013 -**Test Methods T10.01, T10.02,** T10.04 & T11.01

Smoke and Toxicity Assessment

Test Method References "T10.01" / "T10.02"/ "T10.04" (ISO 5659-2: 2012; Plastics - Smoke Generation. Part 2 Determination of Optical Density by a Single Chamber Method) and "T11.01" (Gas Analysis in the Smoke Box EN ISO 5659-2, using FTIR Technique)

A Report To: Metamark (UK) Limited

Document Reference: 356255

Date: 12th October 2017

Issue No.: 2

Page 1

Registered Office: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian EH28 8PL United Kingdom. Reg No.SC 70429 This report in issued in accordance with our terms and conditions, a copy of which is available on request.

0249

Executive Summary

Objective To determine the toxic fume and optical density produced from the following product when tested in accordance with methods T10.01, T10.02, T10.04 and T11.01 as defined in EN 45545-2: 2013 at an irradiance level of 50kW/m² without a pilot flame.

Generic Description		Product reference Thickness		Weight per unit area, density or application rate	
Self-adhesive applied to substrate	e film layers an aluminium			2.87kg/m ^{2*}	
Individual co	mponents used	to manufacture composite	e :		
Top film	Film	"MG 850 RW"	20 microns	Unable to provide	
Top film	Adhesive	Unable to provide	30 microns	Unable to provide	
Bottom film	Film	"MD5/M7"	70 microns	Unable to provide	
Adhesive		Unable to provide Unable to provide		22g/m ²	
Substrate		None assigned 1mm		2700kg/m ³	
Plea	ise see page 7 c	of this test report for the ful	I description of the	product tested	

Test Sponsor Metamark (UK) Limited, Luneside, New Quay Road, Lancaster, LA1 5QP

Summary of Test The average Ds(4) value determined was 115. Results:

The average VOF4 value determined was 360.

The average Ds(max) value determined within 10 minutes was 121.

The average Ds(max) value determined within 20 minutes was 121.

The average CIT value at four minutes was 0.06.

The average CIT value at eight minutes was 0.06.

Date of Test 8th and 21st October 2015

Reason for Revision This document replaces Issue 1 (dated 26th October 2015) of the same number which has been withdrawn. The Ds(max) was not detailed in the summary of test results section and this has now been detailed in this Issue 2 report.

EN45545-2: 2013

Signatories

lester

Responsible Officer C. Lester* Technical Officer

Authorised B. Dean * Technical Leader

* For and on behalf of Exova Warringtonfire.

Report Issued: 12th October 2017

This version of the report has been produced from a .pdf format electronic file that has been provided by Exova Warringtonfire to the sponsor of the report and must only be reproduced in full. Extracts or abridgements of reports must not be published without permission of Exova Warringtonfire.

Document No.: 356255 Author: C. Leste Client: Metama

C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

PAGE NO.

EN45545-2: 2013

Document No.: 356255 Author: C. Leste Client: Metama

CONTENTS

356255 C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Test Details

Introduction	Exova Warringtonfire was commissioned to carry out an area based smoke and toxicity test in accordance with the method recommended in EN 45545-2: 2013. This standard recommends that the test is carried out using the apparatus and procedures detailed in ISO 5659-2: 2012. The standard provides equations which should be calculated in relation to the smoke density. In addition to this the quantitative determination of the gases emitted should be carried out in accordance with the procedure specified in EN 45545 Annex C, Method 1 (Smoke Chamber).
	45545 and EN ISO 5659-2 and this report should be read in conjunction with these and other related standards.
Test method	The principle of the test methods referenced "T10.01", "T10.02, "T10.04" and "T11.01" is to expose a material to specified thermal conditions of pyrolysis and combustion in a continuous procedure.
	Specimens were tested in the flaming mode in a horizontal position by exposure to the heating arrangement specified in ISO 5659-2. The heat flux was 50kW/m ² . The change in optical density of the smoke produced when dispersed within a fixed volume of air is recorded throughout the period of test utilising the Concept Software in order to determine information relating to the smoke density.
	Quantitative determination of toxic gases emitted is carried out using Fourier Transform Infra Red (FT-IR) analysis using the TQ Analyst software. The FT-IR has been calibrated by the analyser manufacturer (Thermo) using library spectrum and bottled gases.
	In all cases, the sample gases are taken from 300mm from the centre of the top of the chamber with sample lines being kept as short as possible to minimise sample losses.
	The test method provides a means for the comparative assessment of products, however, it does not model a real fire situation and the results cannot therefore be used to describe the fire hazard of materials under actual fire conditions.
Fire test study group/EGOLF	Certain aspects of some fire test specifications are open to different interpretations. The Fire Test Study Group and EGOLF have identified a number of such areas and have agreed Resolutions which define common agreement of interpretations between fire test laboratories which are members of the Groups. Where such Resolutions are applicable to this test they have been followed.
Instruction to test	The test was conducted on the 8 th and 21 st October 2015 at the request of Metamark (UK) Limited, the sponsor of the test.

Document No.: 356255 Author: C. Lester Client:

Metamark (UK) Limited

5 of 14 12th October 2017 Issue Date: 2

Page No.:

Issue No.:

Provision of test specimens The specimens were supplied by the sponsor of the test. Exova Warringtonfire was not involved in any selection or sampling procedure. Exova Warringtonfire supplied the substrate and adhered the film to the substrate.

- Test face The self adhesive film face of the specimen was exposed to the heating conditions.
- **Conditioning of** The specimens were received on the 28th August 2015. **specimens**

The specimens were conditioned at temperatures of $23 \pm 2^{\circ}C$ and a relative humidity of $50 \pm 5\%$ RH, for a minimum period of 24 hours prior to testing.

Document No.: 356 Author: C. L Client: Met

356255 C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Description of Test Specimens

The description of the specimens given below has been prepared from information provided by the sponsor of the test. All values quoted are nominal, unless tolerances are given.

General description		on	Self-adhesive film layers applied to an aluminium		
Dro	Product reference		substrate "MD5/M7 & MG 850 RW"		
	Overall thickness of composite		1.15mm (determined by Exova Warringtonfire)		
		· · · · · · · · · · · · · · · · · · ·			
Ove	erall weight pe		2.87kg/m ² (determined by Exova Warringtonfire)		
	Overall thick		50 microns		
		ht per unit area	See Note 1 below		
	Name of ma		See Note 2 below		
a		Generic type	Polyester film		
P		Product reference	"MG 850 RW"		
) L		Name of manufacturer	See Note 2 below		
filr	Film	Thickness	20 microns		
< A B		Weight per unit area	See Note 1 below		
esi.		Colour reference	"Clear"		
Self-adhesive film (Top)		Flame retardant details	See Note 1 below		
ă		Generic type	Solvent acrylic		
Self		Product reference	See Note 1 below		
0)	Adhesive	Name of manufacturer	See Note 2 below		
	Adhesive	Application thickness	30 microns		
		Application method	Roller		
		Flame retardant details	See Note 1 below		
	Overall thickness of self-adhesive film		See Note 1 below		
	Overall weight per unit area of self-		See Note 1 below		
	adhesive film				
	Name of ma	nufacturer of self-adhesive film	See Note 2 below		
		Generic type	Polyvinyl chloride (PVC)		
ε		Product reference	"MD5/M7"		
Self-adhesive film		Name of manufacturer	See Note 2 below		
iχθ	Film	Thickness	70 microns		
les		Weight per unit area	See Note 1 below		
adF		Colour reference	"White"		
-j-		Flame retardant details	See Note 1 below		
Se		Generic type	Solvent-based acrylic		
		Product reference	See Note 1 below		
		Name of manufacturer	See Note 2 below		
	Adhesive	Application rate	22g/m ²		
		Application method	Roller		
		Flame retardant details	See Note 1 below		
		Generic type	Aluminium		
		Name of supplier	S & A Joinery		
9	Substrate	Thickness	1mm		
		Density	2700kg/m ³		
		Flame retardant details	The substrate is inherently flame retardant		
Brie	of description	of manufacturing process	See Note 1 below		
Dife					

Document No.: 356255 Author: C. Leste Client: Metama

C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Note 1. The sponsor of the test was unable to provide this information.

Note 2. The sponsor of the test has provided this information but at the specific request of the sponsor, these details have been omitted from the report and are instead held on the confidential file relating to this investigation.

Document No.: 356 Author: C. Client: Me

356255 C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Test Results

Applicability of test results The test results relate only to the behaviour of the specimens of the product under the particular conditions of test; they are not intended to be the sole criterion for assessing the potential smoke and toxicity hazard of the product in use.

> The test results relate only to the specimens of the product in the form in which they were tested. Small differences in the composition or thickness of the product may significantly affect the performance during the test and will therefore invalidate the test results. It is the responsibility of the supplier of the product to ensure that the product which is supplied is identical with the specimens which were tested.

Smoke Density Test method referenced "T10.01" requires the Ds(4) to be calculated. That is the specific optical density at 4 minutes test duration.

Test method referenced "T10.02" requires the VOF4 to be calculated. That is the area under the Ds vs. time curve during the period zero minutes to four minutes. This is calculated utilising the trapezium rule equation (assuming a finite element (t) of one minute):

$$VOF_4 = D_1 + D_2 + D_3 + \underline{D_4}_2$$

density within the first 10 minutes test duration.

Test method referenced "T10.04" requires the Ds(max) within the first 10 minutes test duration to be calculated. That is the maximum specific optical

	Specimen 1	Specimen 2	Specimen 3	Mean
Ds(4)	141	100	103	Average 115
VOF4	393	317	370	360
Ds(max) within 10 minutes	143	102	119	121

Toxic Gas Emission Test method referenced "T11.01" required the CIT to be calculated. That is the conventional index of toxicity, a summation term from the analysis of gases taken at four minutes and eight minutes test duration.

	Specimen 1	Specimen 2	Specimen 3	Mean Average
CIT (4 minutes)	0.02	0.04	0.10	0.06
CIT (8 minutes)	0.03	0.05	0.09	0.06

Additional Test Data

Additional test data relating to the smoke & toxicity performance of the product is detailed in Appendix I of this report.

A graph of the results obtained is illustrated in Appendix II.

Document No.: 356255 Author: C. Lester Client: Metamark

C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Summary of results The average Ds(4) value determined was 115.

The average VOF4 value determined was 360.

The average Ds(max) value determined within 10 minutes was 121.

The average Ds(max) value determined within 20 minutes was 121.

The average CIT value at four minutes was 0.06.

The average CIT value at eight minutes was 0.06.

Validity The specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

> These results relate only to the behaviour of the specimens of the product under the particular conditions of test; they are not intended to be the sole criterion for assessing the potential smoke obscuration hazard of the product in use.

> This report may only be reproduced in full. Extracts or abridgements shall not be published without permission of Exova Warringtonfire.

Document No.: 356255 Author: Client:

C. Lester Metamark (UK) Limited

Page No.: Issue Date: Issue No.:

Appendix I

Gas Concentration At Four Minutes:

The concentration of each gas species for which analysis was conducted for at the four minute sampling point (expressed in ppm and kg/m³) is provided in the below table:

Specimen 1		Specimen 2		Specimen 3		Mean Average	
ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m ³
249	0.0002	178	0.0002	258	0.0003	228	0.0002
425	0.0006	1149	0.0018	1444	0.0022	1006	0.0015
ND	ND	ND	ND	ND	ND	ND	ND
ND	ND	12	0.0000	49	0.0001	20	0.0000
ND	ND	ND	ND	ND	ND	ND	ND
ND	ND	ND	ND	ND	ND	ND	ND
2	0.0000	3	0.0000	3	0.0000	3	0.0000
2	0.0000	3	0.0000	4	0.0000	3	0.0000
	ppm 249 425 ND ND ND ND 2 2 2	ppm kg/m³ 249 0.0002 425 0.0006 ND ND ND ND ND ND ND ND 2 0.0000 2 0.0000 2 0.0000	ppm kg/m³ ppm 249 0.0002 178 425 0.0006 1149 ND ND ND ND ND 12 ND ND ND ND ND 3	ppmkg/m³ppmkg/m³2490.00021780.00024250.000611490.0018NDNDNDNDNDND120.0000NDNDNDNDNDNDNDNDND0.000030.000020.000030.0000	ppm kg/m³ ppm kg/m³ ppm 249 0.0002 178 0.0002 258 425 0.0006 1149 0.0018 1444 ND ND ND ND ND ND ND 12 0.0000 49 ND ND ND ND ND ND ND ND ND ND ND ND 12 0.0000 49 ND ND ND ND ND ND ND ND ND ND 2 0.0000 3 0.0000 3 2 0.0000 3 0.0000 4	ppmkg/m³ppmkg/m³ppmkg/m³2490.00021780.00022580.00034250.000611490.001814440.0022NDNDNDNDNDNDNDND120.0000490.0001NDNDNDNDNDNDNDNDNDNDNDNDNDND30.000030.000020.000030.000040.0000	ppmkg/m³ppmkg/m³ppmkg/m³ppm2490.00021780.00022580.00032284250.000611490.001814440.00221006NDNDNDNDNDNDNDNDND120.0000490.000120NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND30.00003320.000030.000040.000033

Where ND indicates None Detected

Gas Concentration At Eight Minutes:

The concentration of each gas species for which analysis was conducted for at the eight minute sampling point (expressed in ppm and kg/m³) is provided in the below table:

sampling point (expressed in ppin and kg/m) is provided in the below table.								
Gas	Specimen 1		Specimen 2		Specimen 3		Mean Average	
Gas	ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m ³	ppm	kg/m ³
Carbon Monoxide	336	0.0003	267	0.0003	295	0.0003	299	0.0003
Carbon Dioxide	583	0.0009	1319	0.0020	1508	0.0023	1137	0.0017
Sulphur Dioxide	ND	ND	ND	ND	ND	ND	ND	ND
Hydrogen Chloride	ND	ND	15	0.0000	41	0.0001	19	0.0000
Hydrogen Bromide	ND	ND	ND	ND	ND	ND	ND	ND
Hydrogen Fluoride	ND	ND	ND	ND	ND	ND	ND	ND
Hydrogen cyanide	3	0.0000	3	0.0000	3	0.0000	3	0.0000
Nitrogen Oxides	2	0.0000	2	0.0000	3	0.0000	2	0.0000

Where ND indicates None Detected

Document No.: 356255 Author: C. Lester

Client:

00

Metamark (UK) Limited

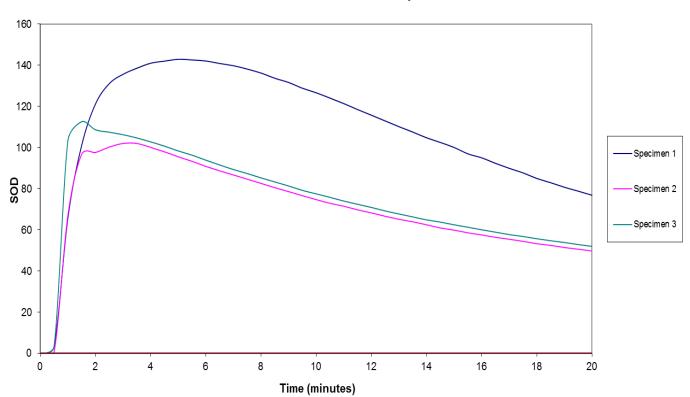
Page No.: Issue Date:

Issue No.:

	SP	<u>Mean</u>		
	1	2	3	
Clear Beam Correction Factor (D _c)	9	15	16	
Specific Optical Density at 10 minutes (D _s 10)	127	75	77	93
Specimen thickness	1.17	1.14	1.15	1.15
Initial specimen weight (g)	16.1	16.1	16.2	16.1
Final specimen weight (g)	14.7	14.8	14.6	14.7
Mass Loss (g)	1.4	1.3	1.6	1.4
Wire Grid (if applicable)	N/A	N/A	N/A	N/A
Neutral-density correction factor (C_f) (if applicable)	N/A	N/A	N/A	N/A
Test Duration (s)	1200	1200	1200	1200

Observations:

	50kW/m² In	The Absence Of <i>I</i>	A Pilot Flame
Specimen No.	1	2	3
Colour of smoke produced	Dark	Dark	Dark
Expansion distance towards heater (mm)	N/A	N/A	N/A
Ignition time in seconds (if applicable)	N/A	49	43
Extinction time in seconds (if applicable)	N/A	76	74
Re-ignition time in seconds (if applicable)	*	*	*
Extinction time in seconds (if applicable)	N/A	N/A	N/A
* = Did Not Re-ignite	N/A = Not Ap	plicable	


Document No.: 356255 Author: C. Leste Client: Metama

C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Appendix II

50kW/m² in the absence of a pilot flame

Document No.: 356255 Author: C. Lester Client: Metamark

356255 C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

Revision History

Issue No : 2	Re - Issue Date: 12 th October 2017			
Revised By: C. Lester	Approved By: B. Dean			
Reason for Revision: This document replaces Issue 1 (dated 26 th October 2015) of the same number which has				
been withdrawn. The Ds(max) was not detailed in the summary of test results section and this has now been				
detailed in this Issue 2 report.				

Issue No :	Re - Issue Date:
Revised By:	Approved By:
Reason for Revision:	

Document No.: 356 Author: C. L Client: Met

356255 C. Lester Metamark (UK) Limited Page No.: Issue Date: Issue No.:

